Thursday, April 14, 2011

Connectionism and emergence

I have not read too much mathematical linguistics lately, but I have been reading a lot of cognitive science and neuroscience, as well as connectionist research. Let me start off with connectionism. This is the approach involving artificial neural networks to employ "distributed processing" for computational purposes. I think that, in principle, such an approach to modeling language as a cognitive phenomenon will ultimately be the right approach. But there is a very large problem with current neural net modeling, chiefly that the neurons are too simple and the networks too small.

Neuroscience studies real neurons and their networks, although at present there are huge gaps in our understanding. While we are able to record signals from single neurons or very small groups, and we can also do "brain imaging" to track activity in huge (order of 10^9) numbers of neurons, we have no way to study activity in a few thousand neurons. It is precisely this "mesoscopic" regime where the phenomena of thought, memory, and knowledge are likely to be emergent from the nonlinear dynamical system known as the brain.

This brings me to the subject of "emergent phenomena," which refers to things that happen in a nonlinear dynamical system as a result of huge numbers of interactions among nonlinear dependencies. An emergent phenomenon on the ocean is a "rogue wave." An emergent phenomenon cannot be directly simulated through deterministic calculation, because it happens at a scale where there is not enough computing power in the world to run the simulation, there are too many interdependent variables.

Meanwhile, connectionism involves running simulations of neural networks that can be deterministically calculated. There are no emergent phenomena (so far as I know) in standard connectionist networks. So, this means they are not even able to manifest the most important thing happening in the brain in principle. So there is not any question that artificial neural networks do not model anything about the brain in the slightest sense.

Meanwhile in linguistics, a 'hot' idea is that classical linguistic categories like phonemes and parts of speech are "emergent" in a similar sense to an emergent phenomenon. The "emergentist" view of language holds that a phoneme emerges as an element of knowledge only after broad experience with "exemplars" in real speech. I am not exactly clear on the sense in which emergentist linguists think that such categories are emergent; do they mean statistically somehow, or do they mean "emergent" in the nonlinear chaos theory sense?

Conventional mathematical linguistics is looking quite far behind these newer developments and directions, but there is no question that better mathematical analysis would really help everyone to understand the new ideas like emergent linguistics.

No comments:

Post a Comment